Darboux Transformations for a Lax Integrable System in 2n-Dimensions
نویسنده
چکیده
A 2n-dimensional Lax integrable system is proposed by a set of specific spectral problems. It contains Takasaki equations, the self-dual Yang-Mills equations and its integrable hierarchy as examples. An explicit formulation of Darboux transformations is established for this Lax integrable system. The Vandermonde and generalized Cauchy determinant formulas lead to a description for deriving explicit solutions and thus some rational and analytic solutions are obtained.
منابع مشابه
Two integrable lattice hierarchies and their respective Darboux transformations
Two integrable lattice hierarchies associated with two discrete matrix spectral problems are derived, and the infinitely many conservation laws of the first integrable model is obtained. Moreover, the Darboux transformations based on different Darboux matrixes (2.3.4) and (3.2.4) for the above-mentioned integrable hierarchies are established with the help of two different gauge transformations ...
متن کاملGauge Transformations and Reciprocal Links in 2 + 1
Generalized Lax equations are considered in the spirit of Sato theory. Three decompositions of an underlying algebra of pseudo-diierential operators lead, in turn, to three diierent classes of integrable nonlinear hierarchies. These are associated with Kadomtsev-Petviashvili, modiied Kadomtsev-Petviashvili and Dym hierarchies in 2+1 dimensions. Miura-and auto-BB acklund transformations are show...
متن کاملIntegrable Discretisations for a Class of Nonlinear Schrödinger Equations on Grassmann Algebras
Integrable discretisations for a class of coupled (super) nonlinear Schrödinger (NLS) type of equations are presented. The class corresponds to a Lax operator with entries in a Grassmann algebra. Elementary Darboux transformations are constructed. As a result, Grassmann generalisations of the Toda lattice and the NLS dressing chain are obtained. The compatibility (Bianchi commutativity) of thes...
متن کاملDarboux and Binary Darboux Transformations for Discrete Integrable Systems. II. Discrete Potential mKdV Equation
The paper presents two results. First it is shown how the discrete potential modified KdV equation and its Lax pairs in matrix form arise from the Hirota–Miwa equation by a 2-periodic reduction. Then Darboux transformations and binary Darboux transformations are derived for the discrete potential modified KdV equation and it is shown how these may be used to construct exact solutions.
متن کاملA Lax Operator Hierarchy for the New Fifth Order Integrable System
We consider the Lax representation of the new two-component coupled integrable system recently discovered by the author. Connection of the hierarchy of infinitely many Lax pairs with each other is presented.
متن کامل